SPWG 170B: POWER SYSTEMS 2

Citrus College Course Outline of Record

Heading	Value
Effective Term:	Fall 2021
Credits:	5
Lecture Hours :	72
Lab Hours:	60
Hours Arranged:	0
Prerequisite:	SPWG 170A or by department consent based off of experience and/or industry certification.
Strongly Recommended:	ENGL 101 and MATH 144.
Transferable to CSU:	Yes
Transferable to UC:	No
Grading Method:	Standard Letter

Catalog Course Description

Intended for diesel technology students seeking a career in the power generation sector, this course provides an in-depth study and hands-on activity in delivering, maintaining, troubleshooting and repairing current and legacy production Caterpillar Generator Sets operating as single units. This course is a continuation of the Power Generation series of courses designed to prepare students for the EGSA or CEP certifications. 72 lecture hours, 60 lab hours.

Course Objectives

- Properly recognize generator actual and apparent power loading. \\n
- Identify the effects of power factor and reactive/resistive loading on the engine and generator
- · Recognize different circuit breaker types
- · Verify phase rotation
- Perform verification of generator synchronization adjustment
- Perform set-up and adjustments of power generators to share kW load
- · Identify the principals of modern automatic load sharing
- Preform set-up and adjustments of generators to share the reactive load
- Preform set-up and adjustments of manual breaker closure to parallel generators

Major Course Content

- 1. AC current and voltage
 - a. Testing high output current
 - b. Adjusting high output current on generators
- 2. Production and legacy generator sets
 - a. Inspection and operation of generator mounted control panels
 - b. Inspection and operation of engine mounted junction boxes, including electromechanical control panels
- 3. Modular Control Panel

- a. Introduction to operation of EMCP3, and EMCP 4 control panels
- b. Data link diagnostics of modular control panels
- c. Programing values and parameters using data links
- 4. Voltage regulators
 - a. Perform voltage and frequency adjustments per system requirements
 - b. Identify and understand VR3, VR6, DVR, CDVR and IVR
 - c. Maintaining proper voltage and relationship between load of power demand and engine performance
- 5. Generator implementation strategy
 - a. Perform proper planned maintenance
 - b. Diagnostic measurements on generators
- 6. State Cat ATS models and basic controls strategy
 - a. Verification of phase rotation
 - b. Verification and adjustment of generator synchronization
 - c. Generator set-up and adjustments to share kW load
 - d. Principals of modern automatic load sharing
 - e. Set-up and adjustments of generators to share the reactive load
 - f. Set-up and adjustments of manual breaker closure to parallel generators

Lab Content

Labs will be in the form of hands on worksheets, tasks, and team; instructor led lessons.

(During lab participants will be asked to bring their safety glasses with side shields, leather boots/shoes (electrical hazard rated recommended, and work uniform.)

Testing, adjust, and troubleshoot current production and legacy generator sets, generator mounted control panels, engine mounted junction boxes, including electromechanical control panels.

- 1. Generator sets
 - a. Electronic Modular Control Panel II+, EMCP3, and EMCP 4 inspection
 - Perform the proper voltage and frequency adjustments per customer requirements for VR3, VR6, DVR, CDVR and IVR voltage regulators
 - c. Programing and adjustments of generators and generator controls via Data network
 - d. Perform proper planned maintenance and make diagnostic measurements on generators
- 2. ATS models and controls strategy
 - a. Verification of phase rotation
 - b. Verification and adjustment of synchronization
 - c. Set-up and adjustments to share kW load
- 3. Paralleling of Genset
 - a. Verify principals of modern automatic load sharing
 - b. Set-up and adjustments to share the reactive load
 - c. Manual breaker closure to generators
- Divide engine load (KW) by making the proper governor adjustments

 Adjust for minimum circulating current
 - b. Connect and adjust generators to operate in parallel using cross current compensation

- c. Parallel generators after making proper engine and generator adjustments including proper synchronization and phase rotation verification
- 5. Support systems and ancillary operations
 - a. Switch-gear components, functions, and required wiring
 - b. Principles of co-generation and peak shaving
 - c. Remote and direct interface with Generator Set Control Panel
 - d. Identify system components and parts placement

Suggested Reading Other Than Required Textbook

EMCP II P Application Notes study material LEHE7584-00 lab handout power systems calculations

Examples of Outside Assignments

Generator Characteristics sample ws CEP Quiz sample

Instruction Type(s)

Lecture, Lab