REC 235: ACOUSTICS FOR ENGINEERS

Citrus College Course Outline of Record

Heading	Value
Effective Term:	Fall 2021
Credits:	3
Total Contact Hours:	54
Lecture Hours :	54
Lab Hours:	0
Hours Arranged:	0
Outside of Class Hours:	108
Prerequisite:	REC 105, REC 115, REC 125, REC 135, REC 145.
Corequisite:	REC 205, REC 215, REC 225, REC 245.
Transferable to CSU:	Yes
Transferable to UC:	No
Grading Method:	Standard Letter

Examples of Required Writing Assignments

Students will complete multiple 3-4 page essays on acoustics principles and evaluation techniques.

Examples of Outside Assignments

Students will complete acoustical analysis of performance venues and sound studios.

Instruction Type(s)

Lecture, Online Education Lecture

Catalog Course Description

This course is a study of Acoustics principles and the physics of sound. It includes sound propagation, hearing and sound perception, room resonances, acoustic calculations, studio design and acoustical treatments. 54 lecture hours.

Course Objectives

- Identify the sonic properties of materials used in live venues and recording studios
- Identify properties that affect room acoustics and listener perspective
- · Correlate the properties of room acoustics with effects processors

Major Course Content

- 1. Sound Propagation The Waveform Model, sound measurement, frequency amplitude and wavelength.
- 2. Hearing and Sound Perception human hearing and psychoacoustics.
- 3. The Physics of Sound sound behavior, reflection, reverberation, absorption, refraction and diffusion.
- Controlling Noise acoustic isolation, de-coupling and transmission loss.
- Room Modes resonances in enclosed spaces, determining modal frequencies.
- 6. Acoustics of the Recording Studio interior treatments, controlling reflections, studio and control room acoustical treatment.
- 7. Acoustic Calculations calculating sound pressure, wavelength, reverberation times and modal frequencies.

Suggested Reading Other Than Required Textbook

Industry related periodicals and journals.