1

NC AU149: DIESEL ENGINE MANAGEMENT SYSTEMS SERVICE AND REPAIR

Citrus College Course Outline of Record

Heading	Value
Effective Term:	Fall 2025
Credits:	0
Total Contact Hours:	108
Lecture Hours :	54
Lab Hours:	54
Hours Arranged:	0
Outside of Class Hours:	108
Total Student Learning Hours:	216
Strongly Recommended:	ENGL C1000; MATH 144; NC AU148, AUTO 148 or AUTO 168 or one year of industry experience in Automotive or Medium/Heavy Truck.
Transferable to CSU:	No
Transferable to UC:	No
Grading Method:	Non-Credit Course

Catalog Course Description

Intended for Automotive and Light-Truck Technology students, this course covers the theory of operation of 4-stroke diesel engines along with the theory of operation, testing and inspection, and service and repair of air-inlet systems (including forced induction), exhaust systems, fuel-delivery systems (including mechanical and electronic engine controls), and emission-control systems. Course prepares students for ASE A9 certification. This course is the noncredit equivalent of credit course AUTO 149. 54 lecture hours, 54 lab hours.

Course Objectives

- Cite the nominal, expected fuel pressures of port fuel-injected gasoline engines, direct injection equipped gasoline engines, and diesel engines.
- Demonstrate knowledge of on-vehicle diesel particulate filter cleaning procedures and perform the procedure.
- Describe and test the operation and advantages & disadvantages
 of the various types of diesel fuel injection systems including unit
 injection, hydraulic unit injection, hydraulic electronic unit injection,
 and common-rail fuel injection.
- Describe the operation and advantages & disadvantages of solenoidtype and piezo-type fuel injectors in common-rail applications.
- Cite and demonstrate the necessary safety precautions in working with high-pressure fuel systems.
- · Describe homogeneous charge spark ignition.
- · Describe homogeneous charge compression ignition.
- Describe heterogeneous charge compression ignition (diesel engine operation).

- Describe late-model diesel engine exhaust after-treatment systems including diesel particulate filters (DPF), urea injection, selective catalyst reduction, and oxidizing catalysts.
- Describe the benefits of forced induction including supercharging, turbocharging, and variable-vane turbochargers.
- Explain the importance of exhaust gas recirculation (EGR) in diesel engines for reduction of oxides of nitrogen (NOx) emissions.

Major Course Content

- 1. Diesel Engine Operation
 - a. Diesel operational theory
 - b. Four-stroke cycle
 - c. PV and other thermodynamic considerations
 - d. Diesel engine history
 - e. Forced induction
- 2. Horsepower, Torque, and related Terms
 - a. Power-related terminology
 - b. Heat-energy equivalents
 - c. ISO standards
- 3. Combustion Systems
 - a. The combustion process
 - b. Types of combustion chambers
 - c. Fuel injection timing
 - d. Glow plugs
 - e. Exhaust emissions limits
- 4. Air Inlet and Exhaust Systems
 - a. Intake and exhaust system flow
 - b. Air cleaners
 - c. Turbochargers
 - d. Superchargers
 - e. Aftercoolers/Intercoolers
 - f. Exhaust mufflers and particulate traps
 - g. Exhaust brake systems
 - h. Compression brake ("jake brake") systems
- 5. Diesel Fuel, Filters, Water Separators
 - a. Diesel fuel grades
 - b. Specific gravity
 - c. Heat (BTU) energy
 - d. Fuel transfer pumps (supply pumps)
 - e. Fuel filtration
 - f. Water separators
 - g. Fuel heaters/coolers
- 6. Types of Fuel Systems
 - a. Basic fuel injection systems
 - b. Distributor pump systems
 - c. Diesel Common Rail (DCR) systems
 - d. Solenoid injectors
 - e. Piezo injectors
 - f. Electronic Unit Injection (EUI) systems
 - g. Hydraulic Electronic Unit Injection (HEUI) systems
 - h. Injection nozzles
 - i. Mechanical & electronic governor operation
- 7. Electronic Engine Management

- 2
- a. Electronic Engine Management overview
- b. Sensors
- c. ECM Serial Data
- d. CAN bus systems
- e. Engine Protection Systems (EPS)
- 8. Exhaust Emission Controls
 - a. Exhaust Gas Recirculation (EGR) systems
 - b. Oxidation catalysts
 - c. Reduction catalysts
 - d. Selective Catalytic Reduction (SCR) systems
 - e. Diesel Particulate Filtration (DPF) systems
 - f. Pressure Differential Sensors
 - g. Urea Injection
- 9. Manufacturer Specific Content
 - a. Robert Bosch Corporation
 - b. Detroit Diesel
 - c. Cummins
 - d. Delphi
 - e. International (Ford)
 - f. GM/Isuzu Duramax

Lab Content

- 1. Engine Mechanical Inspections
 - a. Compression inspections
 - b. Fuel pressure and fuel return inspections
 - c. Oil pressure inspections
- 2. Engine Electronic System Inspection
 - a. Glow plug inspections
 - b. Intake heater grid inspections
- 3. Engine Control System
 - a. Scantool diagnostics
 - b. Scantool programming
 - c. Input sensor diagnostics
 - d. Output actuator diagnostics
- 4. Aftertreatment Systems
 - a. Aftertreatment system diagnostics
 - b. DPF filter replacement
 - c. DPF regeneration
 - d. DEF inspection and maintenance
 - e. SCR inspection

Suggested Reading Other Than Required Textbook

Technical articles—both peer-reviewed and other--published in periodicals and electronically.

Examples of Required Writing Assignments

Technical article evaluations & summaries.

Examples of Outside Assignments

Chapter review / ASE-prep questions.

Instruction Type(s)

Lab, Lecture